A Multi Level Multi Domain Method for Particle In Cell plasma simulations

نویسندگان

  • Maria Elena Innocenti
  • Giovanni Lapenta
  • Stefano Markidis
  • A. Beck
  • A. Vapirev
چکیده

A novel adaptive technique for electromagnetic Particle In Cell (PIC) plasma simulations is presented here. Two main issues are identified in designing adaptive techniques for PIC simulation: first, the choice of the size of the particle shape function in progressively refined grids, with the need to avoid the exertion of self-forces on particles, and, second, the necessity to comply with the strict stability constraints of the explicit PIC algorithm. The adaptive implementation presented responds to these demands with the introduction of a Multi Level Multi Domain (MLMD) system (where a cloud of self-similar domains is fully simulated with both fields and particles) and the use of an Implicit Moment PIC method as baseline algorithm for the adaptive evolution. Information is exchanged between the levels with the projection of the field information from the refined to the coarser levels and the interpolation of the boundary conditions for the refined levels from the coarser level fields. Particles are bound to their level of origin and are prevented from transitioning to coarser levels, but are repopulated at the refined grid boundaries with a splitting technique. The presented algorithm is tested against a series of simulation challenges.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grid coupling mechanism in the semi-implicit adaptive Multi-Level Multi-Domain method

The Multi-Level Multi-Domain (MLMD) method is a semi-implicit adaptive method for Particle-In-Cell plasma simulations. It has been demonstrated in the past in simulations of Maxwellian plasmas, electrostatic and electromagnetic instabilities, plasma expansion in vacuum, magnetic reconnection [1, 2, 3]. In multiple occasions, it has been commented on the coupling between the coarse and the refin...

متن کامل

PSO for multi-objective problems: Criteria for leader selection and uniformity distribution

This paper proposes a method to solve multi-objective problems using improved Particle Swarm Optimization. We propose leader particles which guide other particles inside the problem domain. Two techniques are suggested for selection and deletion of such particles to improve the optimal solutions. The first one is based on the mean of the m optimal particles and the second one is based on appoin...

متن کامل

Solving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization

Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...

متن کامل

A Multi-Scale Electromagnetic Particle Code with Adaptive Mesh Refinement and Its Parallelization

To investigate multi-scale phenomena in space plasma including plasma kinetic effects, we started to develop a new electromagnetic Particle-In-Cell (PIC) code with Adaptive Mesh Refinement (AMR) technique. In AMR simulation, spatial grid size and time step intervals are defined according to the hierarchy levels, where high and low levels correspond to the fine and coarse grid systems, respectiv...

متن کامل

Multi-level multi-domain algorithm implementation for two-dimensional multiscale particle in cell simulations

There are a number of modeling challenges posed by space weather simulations. Most of them arise from the multiscale and multiphysics aspects of the problem. The multiple scales dramatically increase the requirements, in terms of computational resources, because of the need of performing large scale simulations with the proper small-scales resolution. Lately, several suggestions have been made ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 238  شماره 

صفحات  -

تاریخ انتشار 2013